Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Bioeng Transl Med ; 7(2): e10293, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-35600666

RESUMEN

There is clinical need for a quantifiable point-of-care (PoC) SARS-CoV-2 neutralizing antibody (nAb) test that is adaptable with the pandemic's changing landscape. Here, we present a rapid and semi-quantitative nAb test that uses finger stick or venous blood to assess the nAb response of vaccinated population against wild-type (WT), alpha, beta, gamma, and delta variant RBDs. It captures a clinically relevant range of nAb levels, and effectively differentiates prevaccination, post first dose, and post second dose vaccination samples within 10 min. The data observed against alpha, beta, gamma, and delta variants agrees with published results evaluated in established serology tests. Finally, our test revealed a substantial reduction in nAb level for beta, gamma, and delta variants between early BNT162b2 vaccination group (within 3 months) and later vaccination group (post 3 months). This test is highly suited for PoC settings and provides an insightful nAb response in a postvaccinated population.

2.
Nat Commun ; 12(1): 4657, 2021 08 02.
Artículo en Inglés | MEDLINE | ID: mdl-34341359

RESUMEN

Correlative imaging and quantification of intracellular nanoparticles with the underlying ultrastructure is crucial for understanding cell-nanoparticle interactions in biological research. However, correlative nanoscale imaging of whole cells still remains a daunting challenge. Here, we report a straightforward nanoscopic approach for whole-cell correlative imaging, by simultaneous ionoluminescence and ultrastructure mapping implemented with a highly focused beam of alpha particles. We demonstrate that fluorescent nanodiamonds exhibit fast, ultrabright and stable emission upon excitation by alpha particles. Thus, by using fluorescent nanodiamonds as imaging probes, our approach enables quantification and correlative localization of single nanodiamonds within a whole cell at sub-30 nm resolution. As an application example, we show that our approach, together with Monte Carlo simulations and radiobiological experiments, can be employed to provide unique insights into the mechanisms of nanodiamond radiosensitization at the single whole-cell level. These findings may benefit clinical studies of radio-enhancement effects by nanoparticles in charged-particle cancer therapy.


Asunto(s)
Partículas alfa , Núcleo Celular/efectos de la radiación , Roturas del ADN de Doble Cadena/efectos de la radiación , Histonas/metabolismo , Nanodiamantes/efectos de la radiación , Proteína 1 de Unión al Supresor Tumoral P53/metabolismo , Núcleo Celular/genética , Núcleo Celular/metabolismo , Células HeLa , Células Hep G2 , Humanos , Microscopía Confocal/métodos , Microscopía Electrónica de Rastreo/métodos , Nanodiamantes/química , Nanodiamantes/ultraestructura , Fosforilación/efectos de la radiación
3.
ACS Appl Mater Interfaces ; 11(46): 43708-43718, 2019 Nov 20.
Artículo en Inglés | MEDLINE | ID: mdl-31642311

RESUMEN

Gas-induced growth of organic-inorganic hybrid perovskites, especially methylammonium lead iodide (MAPbI3), has shown interesting properties and applications in the area of optoelectronics. In this report, we introduce a method of gas-induced band gap engineering of thin films of MAPbI3 due to systematic dimensional confinement-deconfinement along the crystallographic c axis of growing MAPbI3. Interestingly, such a restricted growth phenomenon was observed when the hexylammonium lead iodide (two-dimensional hybrid perovskite) film was exposed to methylamine gas instead of the conventional PbI2 film-methylamine gas precursor pair. Hexylamine, formed due to the cation exchange reaction, interacts selectively with the Pb centers of growing MAPbI3 crystals, and this induces an enormous restriction in the growth of MAPbI3 along the crystallographic c direction, leading to a unique sheet-type MAPbI3 film having a much higher band gap (2.18 eV) compared to conventional bulk MAPbI3. However, careful control of exposure timing gradually evaporates the hexylamine, leading to systematic dimensional deconfinement, enabling modulation of the band gap from 2.18 to 1.69 eV. An interplay of adsorption and desorption of hexylamine is also utilized for generating patterns of two different fluorescent hybrid perovskite materials in a single pixel. This new mechanistic investigation highlighting gas-induced interplay of dimensional confinement-deconfinement associated with band gap tuning provides smooth thin films, which can be used to develop optoelectronic devices.

4.
Opt Lett ; 43(11): 2648-2651, 2018 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-29856384

RESUMEN

Ion-implanted waveguides were directly written in bulk single-crystal diamond by scanning a focused 2 MeV proton beam. By controlling the fluence and the lateral size of the proton beam, a bright and near-circular single-mode profile was observed. Propagation loss and effective refractive index of the guided mode were measured by the Fabry-Pérot technique, confirming single-mode guiding. Micro-Raman maps of the waveguides were used to visualize damage profiles and defect distributions induced by the proton beam. The demonstration of single-mode light guiding in our waveguides shows that direct proton beam writing is a promising tool in the rapid manufacture of integrated optical circuits in bulk diamond.

5.
Sci Rep ; 7(1): 7842, 2017 08 10.
Artículo en Inglés | MEDLINE | ID: mdl-28798295

RESUMEN

Optically active silica nanoparticles are interesting owing to high stability and easy accessibility. Unlike previous reports on dye loaded silica particles, here we address an important question on how optical properties are dependent on the aggregation-induced segregation of perylene molecules inside and outside the silica nanoparticles. Three differentially functionalized fluorescent perylene - silica hybrid nanoparticles are prepared from appropriate ratios of perylene derivatives and tetraethyl orthosilicate (TEOS) and investigated the structure property correlation (P-ST, P-NP and P-SF). The particles differ from each other on the distribution, organization and intermolecular interaction of perylene inside or outside the silica matrix. Structure and morphology of all hybrid nanoparticles were characterized using a range of techniques such as electron microscope, optical spectroscopic measurements and thermal analysis. The organizations of perylene in three different silica nanoparticles were explored using steady-state fluorescence, fluorescence anisotropy, lifetime measurements and solid state polarized spectroscopic studies. The interactions and changes in optical properties of the silica nanoparticles in presence of different amines were tested and quantified both in solution and in vapor phase using fluorescence quenching studies. The synthesized materials can be regenerated after washing with water and reused for sensing of amines.

6.
Opt Lett ; 42(11): 2106-2109, 2017 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-28569856

RESUMEN

Dark mode in metamaterials has become a vital component in determining the merit of the Fano type of interference in the system. Its strength dictates the enhancement and suppression in the amplitude and Q-factors of resulting resonance features. In this work, we experimentally probe the effect of strong near-field coupling on the strength of the dark mode in a concentrically aligned bright resonator and a dark split ring resonator (SRR) system exhibiting the classical analog of the electromagnetically induced transparency effect. An enhanced strong magnetic field between the bright-dark resonators destructively interferes with the inherent magnetic field of the dark mode to completely annihilate its effect in the coupled system. Moreover, the observed annihilation effect in the dark mode has a direct consequence on the disappearance of the SRR effect in the proposed system, wherein under the strong magnetic interactions, the LC resonance feature of the split ring resonator becomes invisible to the incident terahertz wave.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...